
42 The Delphi Magazine Issue 69

Kylix: A Technical Overview
by Dave Jewell

After a long wait, Kylix is
actually here. This overview is

a follow on from the ‘first-look’
article which I wrote a couple of
months back. As always, I have
focused on the issues which inter-
est me, and I’d suggest that you
look elsewhere if you want the
low-down on database goodies and
the like! I’ll leave that sort of thing
in the capable hands of Brian Long
et al. But if you want to know
whether Kylix 1.0 is worth buying
and if it represents a practical and
usable development system for
Linux, then read on.

What’s In The Box?
Kylix 1.0, in common with most
other Borland products released in
recent years, comes in that hazard-
ous ‘bottomless’ carton: keep a
firm grip on it or the contents will
escape at the first opportunity,
making a large dent in the floor or
(if you’re unlucky) your foot.
Damage to the metatarsals is ren-
dered even more likely by the pres-
ence of the weighty Developer’s
Guide which covers all aspects of

Kylix programming, a smaller
Language Guide and a Quick Start
booklet.

Once I’d removed the aforemen-
tioned items from the box, I finally
unearthed three CDs in clamshell
cases hiding at the bottom of the
box. The first CD contains Kylix
itself, and the second is entitled
Companion Tools. The former
includes the install scripts and the
kernel patches which I mentioned
a couple of months ago in my ‘first-
look’ preview. In case you don’t
remember why this stuff is neces-
sary, suffice to say that Kylix signif-
icantly pushes the envelope of the
Linux operating system itself, and
it won’t run on old Linux distribu-
tions. One of the reasons for this,
according to the online documen-
tation, is that there are a few bugs
in the standard glibc runtime
library, and in the Linux loader
which is responsible for reading
executables into memory. For the
vast majority of Linux applications,
these bugs aren’t of any signifi-
cance, but because of the dynamic
nature of the Kylix IDE (and, specif-
ically, the ability to load and
unload design-time packages at
will) it’s crucial to fix these prob-
lems before trying to run the
development system.

Kylix requires less than 200Mb of
hard disk space, so you’re not
likely to need a new drive! It comes

with a set of kernel patches for Red
Hat 6.2 and 7.0, Mandrake 7.2 and
SuSE 7.0. If you have one of these
distributions, then it should be
easy to get Kylix up and running; if
you have an older distribution,
then now’s the time to think about
upgrading. Just to make things
easier still, you’ll find an evalua-
tion version of SuSE 7.0 bundled
with Kylix: this is the third CD of
the bundle. This particular version
appears to already have been
patched for Kylix compatibility,
because when I tried running the
little borpretest program (prior to
installing Kylix), it immediately
told me that the operating system
had passed the various compati-
bility tests.

Another important issue is to
buy some more RAM! Don’t be
fooled into swallowing the old
adage that anything Windows does
can be done under Linux using one
tenth the amount of RAM, it’s not
so! At least, not where Kylix is con-
cerned: it’s a complex, RAD-based
development tool which needs
plenty of RAM to stretch out in.
Borland recommend 128Mb, but
I’d suggest 256Mb. Also, bear in
mind that you should really double
this again if you run Linux under
Windows NT or Windows 2000
using VMware; in other words, if
you’ve got a 256Mb machine, then
you should give half of it to the
guest operating system. Don’t
accept the default VMware setting
which allocates a measly 48Mb to
Linux, you’ll find this an exercise in
futility once you try and run Kylix.

Third Party Support
Delphi and C++Builder program-
mers are used to having the Com-
ponent Palette full to bursting with
assorted drop-in, reusable compo-
nents. By contrast, Kylix offers a
relatively spartan selection of
standard controls, wrapper
classes for the Qt dialogs,
dbExpress and other assorted
database components, and not a

➤ Figure 1: Kylix includes a
special test procedure located
in the BORPRETEST directory
of the main CD. This will tell
you whether or not it is
necessary to apply any patches
to the operating system.

May 2001 The Delphi Magazine 43

great deal more besides. This
being the case, it’s a shame that rel-
atively little third-party support is
provided ‘out of the box’ with
Kylix. In fairness, this isn’t too sur-
prising: it’s relatively early days
and whilst many developers are
known to be working on a Kylix
port of their code, relatively few
have delivered thus far. This is
clear when you work your way
through the offerings on the
Companion Tools CD.

If you want to stay on top of
what’s available, point your
newsgroup reader at newsgroups.
borland.com and check out the
various Kylix-specific newsgroups
you’ll find there. Third-party
announcements can be found in
the group borland.public.kylix.
thirdpartytools where you’ll find
other interesting material such as a
gentle sparring match between
Brain Patchwork DX and the cre-
ators of Indy. May the best internet
toolkit win!

Speaking of Indy, it’s undoubt-
edly the star of the collection in
terms of the third-party tools that
Borland actually supply. Indy is a
set of internet components which
originally went by the very forget-
table name of WinShoes. The Indy
components have now been
ported across to Kylix, and very
nice they are too. I was a bit miffed
that those gorgeous component
icons have been replaced in the
final release by a set of much less
decorative graphics; I suspect this
may be for the benefit of those who
run their Linux systems with only
256-colours (or worse). Indy is
great provided that you’re com-
fortable with the ‘blocking’ para-
digm that they use: all internet
calls are blocking, which means
that if you don’t want to block the
user interface of your (for exam-
ple) newsreader application, then
you’ll need to move the blocking
calls into another thread to main-
tain foreground responsiveness.
At least, that’s the theory, but see
my comments on performance
issues later in this article.

A number of third-party compo-
nent vendors have announced
support for Kylix, and many of
these products will hopefully be

available by the time you
read this review. The well-
known TurboPower Software Com-
pany (www.turbopower.com), for
example, have announced that
they plan to ship four new prod-
ucts for Kylix and have undertaken
that everything will be available
within 45 days of Kylix being
released. The new goodies are:
Async Professional CLX, SysTools
for Linux, LockBox 2 and
XMLPartner Standard Edition.
LockBox 2, an encryption library,
is particularly interesting to
UK-based developers because
until recently it wasn’t available in
this country due to brain-dead US
export restrictions on supposedly
‘sensitive’ technology. As I write,
hordes of Chinese scientists are
allegedly crawling all over an
American spy plane, so I think we
can safely say that this particular
horse has well and truly bolted!
LockBox 2 must be good because,
after all, it’s exactly the same tech-
nology which TurboPower use
themselves to protect their own
product CDs.

The well-respected Developer
Express (www.devexpress.com)
are somewhat less forthcoming
about Kylix thus far. Bearing in
mind that these guys have already
created an impressive set of drop-
dead gorgeous components for
Delphi and C++Builder, ported
those components to ATL, making
them true ActiveX controls, and
are now working on creating C#
versions of everything for .NET, it’s
not surprising that they have their
hands full right now! Even so,
Developer Express isn’t a company
that rests on its laurels, and in their
own newsgroups (the server is at
news.devexpress.com), they have

recently been canvassing feed-
back from customers on how many
of them have purchased Kylix and
are actively working with it.

If the general consensus in the
Developer EXpress newsgroups is
representative (and of course,
Borland might well argue that it’s
not) then most Delphi developers
are either disinterested in Linux &
Kylix, find the price of Kylix too
high and are waiting for the Open
Edition before dipping a toe into
the water, or don’t want to pur-
chase Kylix until the Developer
Express tools have been ported to
the new development system. As
the resident company representa-
tive pointed out, this represents
something of a Catch-22 situation,
since Developer Express are wait-
ing for their customers to make the
first move, whereas the customers
are waiting for Developer
Express... Despite all this, there
are tantalising signs that Devel-
oper Express have already got at
least some of their components
working under Kylix, albeit unan-
nounced. Try www.devexpress.
com/kylix to see what I mean.

One developer who has really
pulled his finger out and has some-
thing working now is the indefati-
gable David Berneda, creator of
the awesome TeeChart and
TeeTree components. You can
track down David at www.steema.
com where registered customers
can download a beta of TeeChart
Pro 5.0 for Kylix. Beta it may be, but
it also looks very impressive, as
you’ll see from Figure 3. TeeTree
for Kylix is apparently also in the
pipeline...Yummie!

➤ Figure 2: The Kylix install
program. (Sorry about
the measles, you don't
see this on the real
thing!) The only real
deficiency is that the
program allows Kylix to
be installed into the
/root/kylix directory
without any warning,
see text.

44 The Delphi Magazine Issue 69

Other developers are proving
even more adventurous in terms of
what they’ve managed to achieve
with Kylix, even at this early stage. I
was a bit gob-smacked to discover
w2kwm (see Figure 5), a replace-
ment window manager which can
be used instead of KDE, GNOME, or
whatever. This project is at an
early stage, and I suspect that the
author is going to have to make
some changes for legal reasons (at
the moment it looks far too much
like another operating system we
know and love!) but, needless to
say, I’m very impressed. Catch up
with w2kwm at www.vclcrawler.
com/w2kwm/ where you’ll find the
complete source code and binaries
available for free download.

Other goodies I’ve found on my
travels include Kamiak Tkam-
NetworkAdapters, an interesting
component which interrogates
your network card and returns
assorted metrics as a dataset. This
can be found at www.kamiak.com/
nwi.html. Finally, check out
ProKylix, the Kylix application
profiler which can be found at
www.prodelphi.de. This will cost
you 62.50 euros (no, I don’t know
what that is in real money). We’ll
try to bring you reviews of cool
new Kylix stuff as soon as we can!

IDE Performance
Issues: Is It VMware?
When evaluating a complex prod-
uct like Kylix, there are a variety of
different performance issues to be
addressed. You need to consider
the runtime performance of the
native Linux executables that are
created by the development
system, and of course you also
need to look at the behaviour of the
IDE itself.

I have to be blunt with you and
say that, running under VMware,
the performance of the Kylix IDE
was less than stellar. Initially, I
installed VMware onto my main
development system, a 500MHz
Pentium III equipped with 256Mb of
RAM. Yeah, OK, I appreciate that
this isn’t a cutting edge specifica-
tion these days, but I’d argue that
it’s a pretty reasonable spec for a
Linux machine (I’m moving to
North Wales soon, and plan to get
something a bit more leading-edge
with the money that’s left over!).
Using VMware under Windows
2000, I installed the supplied ver-
sion of SuSE 7.0 into a 2Gb virtual
disk and then installed Kylix itself,
configuring the virtual machine for
128Mb of RAM.

The result, I regret to say, was
less than impressive. The IDE

behaved like the proverbial one-
legged dog in treacle. Pulling down
a menu required a considerable
degree of patience, and often a
menu didn’t appear until you’d
moved along the menu bar and
started trying to pull down another
one! The tooltip hint windows that
appear over component palette
items were often incomplete, with
the actual hint window having the
correct width, but with up to half
of the component name being
conspicuous by its absence.

Worse was to come when I
started trying to type code into the
text editor. I don’t consider myself
to be enormously fast at typing,
but I’m not limited to one finger
either! Unfortunately, the perfor-
mance of the text editor was ide-
ally suited to a one-finger typist;
whatever I typed in appeared at
the rate of about one character per
second, with the IDE gently
ambling along behind me in a vain
effort to keep up. In a word, the
thing was unusable. Clearly, some-
thing was very wrong, but what?

It would obviously be unfair to
simply draw a line under the Kylix
IDE at that point. Frankly, I could
not believe that the thing was
really as bad as the performance I
was seeing! My initial suspicion
was that the performance prob-
lems were caused by some sort of
nasty interaction with VMware, so
I resolved to reinstall Kylix onto a
‘native’ Linux system. I have a
second machine, an ageing
300MHz Pentium II, but it does
have the benefit of possessing
128Mb of physical memory, so in a
sense I’d be testing like with like
because the aforementioned vir-
tual machine was running with
128Mb as well.

In an effort to keep as many
other factors constant as possible,
I used the indispensable Partition
Magic to create a 2Gb Linux parti-
tion on the Pentium II machine,
installed the same version of SuSE
Linux 7.0 and made sure that other
configuration details remained the
same. For example, I took care to
install the KDE 1.x desktop, just
like I’d done previously. KDE 2.x,
while very pretty, is also notori-
ously buggy, and the last thing we

➤ Figure 3: Here's a screenshot of a beta version of the forthcoming
TeeTree for Kylix. Is this a knock-out control or what? Check
www.steema.com for more details.

46 The Delphi Magazine Issue 69

want is to introduce more bugs
when performing a comparative
test of two setups.

The result? Success! On my
200MHz machine, the Kylix IDE was
now a much happier bunny than it
had been before. I could type as
fast as I wanted and the text editor
kept up with me. Tooltip hint win-
dows in the Component Palette
now worked properly and the
whole thing was a lot snappier than
before. Maybe not as snappy as
Delphi running under Windows, I’ll
grant you, but at least it was jog-
ging on two feet instead of crawling
on four... Definitely usable now.

So does this all mean that
VMware was the big culprit here?
Before cogitating on that particular
issue, I’d like to touch on the ques-
tion of application performance.

Performance Issues: Getting
Your Threads In A Knot?
One of my favourite Delphi pro-
jects has always been the
THRDDEMO application which you
can find in the THREADS subdirec-
tory where all the other demo pro-
jects are stored. I’ve always liked
this little application for two rea-
sons: firstly, it gloriously demon-
strates the superiority of the
QuickSort algorithm, and secondly
it’s a nice little demonstration of
the power of threading. Each of the
three sort algorithms continues on
its merry way, unaware that it’s
sharing the processor with a
couple of its cousins.

When I first tried out the thread
demo using my Pentium III
machine under VMware, I was hor-
rified by the apparent performance
of the application. Something that
took just a couple of seconds under
Delphi and Windows was now

taking an eternity. Once again,
something was obviously very
wrong.

I decided to look into this issue
further and measured the perfor-
mance of THRDDEMO on all three
available platforms: Linux with
VMware, native Linux, and of
course good old Delphi under
Windows 2000. The results are
very interesting as you can see
from Table 1. The centre column
indicates the amount of time
required for the QuickSort algo-
rithm to finish sorting while the
rightmost column gives the time
required for all three sort algo-
rithms to finish.

I have normalised the figures for
the middle row (the case where
we’re running SuSE 7.0 natively) to
allow for the fact that this was done
on a 300MHz machine whereas the
other two cases were measured on
my 500MHz PC. For sure, I accept
that there isn’t a linear relationship
between clock frequency and
performance, a 1GHz machine
won’t run programs twice as fast as
a 500MHz machine, for example,
but any errors in my correction are
insignificant compared to the huge
difference in timings that are
shown here. And yes, I did check
these figures several times, and
took an average for each case.

Whichever way you look at it,
these results are extraordinary. A
program that takes less than
two seconds to execute under
Windows takes no less than 47 sec-
onds under a native Linux configu-
ration. Moreover, it takes over five

minutes to run when executing
under VMware.

I decided to sit down and con-
sider my options. What could be
causing this huge performance
problem? Could it be VMware? I
really didn’t think so: by the very
nature of the beast, there are obvi-
ously overheads in VMware, but
not that amount of overhead! If the
problem was VMware, then it was
clearly being caused by a combina-
tion of VMware and something
else.

What about threads? Was it
possible that the Linux thread dis-
patching mechanism was hope-
lessly inefficient? This would fit
with the fact that I was seeing such
appallingly bad performance from
the THRDDEMO program but, on
the other hand, if Linux threads
were broken, then surely the
whole operating system would run
like treacle, and that’s certainly
not the case. Hmmm... I was run-
ning out of options. How about Qt?
Again, this seemed highly unlikely.
I know for a fact that Qt is a very
efficient, professionally written,
C++ class library that (in my expe-
rience) leaves many other class
libraries in the dust from a
performance point of view.

It suddenly struck me that I’d
conducted all these measure-
ments while running THRDDEMO
from inside the IDE itself. How
would things look if I were to run
the program apart from the IDE.
Silly idea? Shouldn’t make a differ-
ence, right? Well, guess what...

When I tried running the thread
demo program from the Linux
command line, the above timings
plummeted to no more than two
seconds for the QuickSort algo-
rithm to complete, with around 6-8
seconds for all three sort algo-
rithms to run to completion. These
figures were very similar for both
variations of Linux, (ie running

Platform QuickSort Time To Finish All Sorts

SuSE 7.0 (VMware) 2 minutes, 5 secs 5 minutes, 13 seconds

SuSE 7.0 (native) 7 seconds 47 seconds

Windows 2000 (with Delphi) Not measurable Less than 2 seconds

➤ Table 1

procedure TThreadSortForm.StartBtnClick(Sender: TObject);
begin
RandomizeArrays;
StartBtn.Enabled := False;
BubbleSortBox.Invalidate;
with TBubbleSort.Create(BubbleSortBox, BubbleSortArray) do
Execute;

SelectionSortBox.Invalidate;
with TSelectionSort.Create(SelectionSortBox, SelectionSortArray) do
Execute;

QuickSortBox.Invalidate;
with TQuickSort.Create(QuickSortBox, QuickSortArray) do
Execute;

StartBtn.Enabled := True;
ArraysRandom := False;

end;

➤ Listing 1

May 2001 The Delphi Magazine 47

native and running under VMware)
and were pretty much in line with
what I’d have expected to see in the
first place.

Old Wine In New Wineskins?
The bottom line, then, is that if you
run certain types of application
from the IDE, you’ll encounter a
massive drop in performance. I
wasn’t sure whether this was gen-
erally true, or whether it was only
the case when dealing with
multi-threaded applications. My
gut feeling was that the thread
switching was the real source of
the problem, but I couldn’t be sure.
Accordingly, in order to investi-
gate this further, I made some mod-
ifications to the THRDDEMO
program. In the file SORTTHDS.PAS,
I changed the TBubbleSort, TSelec-
tionSort and TQuickSort classes so
that they were derived from
TObject instead of TThread. This
necessitated some other minor
changes which should be pretty
obvious if you try the same thing
for yourself. In the main
THSORT.PAS file, I massaged the
StartBtnClick routine so as to look
like Listing 1.

The whole idea, of course, is to
re-jig the program so that it runs
the three sort algorithms sequen-
tially, one after another, without
using threading. Once again, this
gave me a new set of timings. Under
VMware and executing from within
the IDE, the QuickSort algorithm
was now executing so quickly as to
be impossible to time accurately
with my stopwatch (compare this
to a time of over 2 minutes using
threading!) and all three sort algo-
rithms had finished executing in
just over four seconds.

At this point, I could have
hacked the code around some
more, so as to programmatically
perform its own timings, but I
didn’t see any point. From my per-
spective, I was now confident that
the problem only applies to
multi-threaded applications run-
ning inside the IDE, and I was
equally confident that the use of
VMware somehow seems to exac-
erbate the problem. Whether or
not this is going to be an issue for
you obviously depends on the type

Deployment Issues And The GPL ‘Virus’
The deployment of Kylix-authored executables is obviously an important
consideration. If you check the DEPLOY file on the Kylix CD, you’ll find this:
“With Kylix, there is no runtime interpreter. You need only deploy your appli-
cation and any required packages (BPLs). For simple applications you can dis-
tribute a standalone executable.”

Unfortunately, this is not entirely true. Assume for a moment that you’ve
created a do-nothing, application containing only a single form with no con-
trols on it. A non-packaged version of this executable will weigh in at around
380Kb, falling to less than 20Kb when using packages. If you take the
non-packaged executable and try running it on a virgin Linux system (ie a
system which hasn’t had Kylix installed) then the program definitely won’t
run. Assuming that everything else is OK (compatible versions of glibc,
libjpeg, Qt, etc), your app still won’t run because it needs a shared library
called LIBQTINTF.SO.

As you’ll recall from previous discussions, CLX sits on top of Qt. Qt, however
is a C++ class library and it can’t therefore be called directly from Kylix. (That
said, I’d still love to see a general purpose mechanism for calling C++ shared
libraries in Kylix 2.0!) LIBQTINTF.SO essentially acts as the ‘glue’ between CLX
and Qt; the library presents a ‘flat’, procedural interface to CLX, but internally
it converts everything into a true object oriented call on the ‘real’ Qt code
which is located inside LIBQT.SO. Thus, if you peek inside LIBQTINTF.SO, you’ll
find it exporting a ‘flat’ routine called QTimer_start. Internally, this is
resolved onto a call to QTimer:start.

Forgetting about versioning issues, LIBQT.SO will almost certainly be pres-
ent on a virgin Linux installation, but the same isn’t true of LIBQTINTF.SO.
Because this is a specialised glue library, it’s specific to Kylix. Therefore, you
will need to deploy this 1.5Mb file as part of your product distribution. Obvi-
ously, if you create a packaged application, then the needed packages will
have to be deployed as well.

Hint: The simplest way of figuring out what packages and shared libraries
are needed by a particular executable is to use the standard Linux utility ldd.
Just type ldd on the command line followed by the name of the executable
you’re interested in and you’ll be presented with a list of all the libraries and
packages needed by that file. You can also run ldd against a library/package
to determine what libraries it needs, in turn. It’s rather like a command-line
version of Microsoft’s DEPENDS utility, but not so fancy. As is the case with
Windows, this utility obviously can’t ‘see’ any library references that are
made at runtime, using LoadLibrary, GetProcAddress, etc.

It’s to be hoped that all the Linux vendors will include the standard Kylix
packages and shared libraries (such as LIBQTINTF.SO) in future distributions,
this would greatly reduce the deployment size of Kylix-authored software.
However, this is by no means certain; you don’t need me to tell you that the
Open Source brigade frequently view commercial software with a very jaun-
diced eye. Perhaps this will change once the Open Edition of Kylix is released,
but don’t hold your breath...

This brings me on to the thorny issue of the GPL. I’ve been ticked off by
Hallvard Vassbotn and others for blurring the distinction between GPL soft-
ware on the one hand, and freeware on the other, so I’ll try and be clear here!
As you know, the Open Edition of Kylix won’t itself be GPL software (you
won’t get the source code, more’s the pity!) but it can only be used to create
GPL products.

Some folks have likened GPL to a very infectious virus, the high tech equiv-
alent of foot and mouth! Take a reusable component that’s been released
under the GPL, incorporate it into a project you’re developing and
hey-presto, suddenly the entire project has got to be released under GPL too.
The ramifications of this are clear: if you’re building a commercial,
closed-source application using one of the commercial variants of Kylix, it is
simply not possible for you to use a GPL component that has been created by
someone with the Open Edition. This will inevitably lead to a fragmentation
of the Delphi/Kylix component ‘scene’ with some controls being released
under GPL, and some not. I very much hope that Borland change their stance
on this and allow the Open Edition of Kylix to be used to create any type of
non-commercial application, without making recourse to the GPL.

48 The Delphi Magazine Issue 69

of application you’re developing.
But I’d suggest that multi-thread-
ing encompasses quite a large
class of prospective applications,
and all the more so if you choose
Indy for internet programming. As
pointed out earlier, the blocking
nature of these components means
that the use of threads is pretty
well mandatory.

I’m moving into the area of spec-
ulation now, but I am more than a
little suspicious that the woeful
performance of the Kylix IDE under
VMware is essentially another
manifestation of the same prob-
lem. After all, the Kylix IDE is itself a
Kylix application, and, yes, it also
uses threading to handle things
like code completion. Could it be
that the glacial speed of THRDDEMO
running in the IDE is in some way
related to the IDE’s inability to
cope with anything more than one
keystroke per second? Personally,
my hunch is that the two relate to
the same problem.

And did I mention Wine? As you
will know from my past writings,
Borland took the decision to use

Wine (www.winehq.com) in the
development of the Kylix IDE. This
was done primarily for the sake of
expediency, because both the VCL
library and the existing Delphi IDE
make use of Windows API calls. By
using Wine, they were able to get
the IDE up and running that much
faster without having to convert
existing Win32 code for Linux. This
means that, internally, the Kylix
IDE is almost certainly linked with
some variant of VCL rather than
CLX. For similar reasons (as I men-
tioned in my first-look piece) Kylix
has the same dockable IDE win-
dows that we have in Delphi,
whereas applications developed
with Kylix have no docking window
support at all.

At this point, the purists will
undoubtedly step in and point out
that the Kylix IDE is implemented
using Winelib, and not Wine. This
is certainly true, but so what?
Strictly speaking, Wine is an emula-
tor which allows unmodified Win-
dows executables to run under
Linux. Winelib, on the other hand,
is a library of routines which imple-
ment the Windows API under
Linux. By linking against Winelib, a
native Linux application can make
Win32 calls. Either way, it’s the
same code that ends up getting
called in both cases since the Wine
documentation clearly states that:

Most of Winelib’s code consists of
the Win32 API implementation. For-

tunately this part is 100 percent
shared with Wine. The remainder
consists of Windows compatible
headers and tools like the resource
compiler (and even these are used
when compiling Wine).

It’s my suspicion (and again, this
is only speculation on my part, I am
not an expert with Wine or
Winelib) is that there is something
wrong with the Wine code that
implements threads under Linux.
If I’m wrong, I’m sure someone
won’t hesitate to tell me (!) but I
just hope that these performance
problems will disappear with the
next release of Kylix, which is to be
(we understand) 100% native with
no reliance on Winelib.

The Plain Man’s Guide
To Running Kylix Programs
The main Kylix CD includes four
important text files named
README, DEPLOY, INSTALL and
PREINSTALL. You should take care
to read all these files, though not
necessarily in that order!
Borland’s intention was that this
information would get Linux nov-
ices up to speed as quickly as pos-
sible. From where I’m sitting, this
hasn’t been a total success.
Judging from the traffic in the Kylix
newsgroups, there’s one issue
which new Kylix users struggle
with more than anything, and
that’s the thorny question of how
to run a Kylix application outside
of the IDE. Not only do the afore-
mentioned files make assumptions
about the Linux knowledge of their
readers, but some newsgroup par-
ticipants (who should know
better) have displayed a rather
patronising attitude which has
only fanned the flames of discon-
tent. If I refer to an ‘RTFM attitude’,
I’m sure you will understand what
I mean.

So here, for Linux newbies
everywhere, is a plain and simple
explanation of how to configure
your system to run Kylix
executables. Firstly, it’s important
to appreciate that, as with Delphi,
you can create two types of appli-
cation which I generally refer to as
packaged and non-packaged appli-
cations. Just as with Delphi, the
Project|Options dialog has a

➤ Figure 4: ProKylix is probably
the first available Kylix
application profiler that I've
seen. With a claimed timer
resolution that's measured in
microseconds, it's something
that we'll be taking a closer
look at in due course.

50 The Delphi Magazine Issue 69

checkbox marked Build with
runtime packages which allows you
to control whether or not the vari-
ous runtime packages are needed
by your application.

You might be forgiven for think-
ing that a non-packaged applica-
tion is completely standalone, but
this isn’t the case. As we all know,
the CLX framework is sat on top of
the Qt C++ library, and all Kylix
applications need to find this
shared library. (In Linux-land,
DLLs are referred to as shared
libraries.) If you simply install
Kylix, fire up the IDE, create a
do-nothing program with an empty
window and then try running the
executable from the command-
line, you’ll be told that the system
can’t find a library called libqtintf,
or words to that effect.

As with DOS, Windows, etc,
Linux has its equivalent of the ven-
erable PATH environment variable,
and another, LD_LIBRARY_PATH,
which is more concerned with
shared libraries. Unless these are
set up correctly, you won’t be able
to run your Kylix apps outside of
the IDE. The IDE, of course, knows
where all these goodies are located
and establishes its own runtime
environment for applications run
from within itself.

Borland provide a shell script
(like a batch file!) called kylixpath,
which is automatically massaged
at install-time according to where
you decided to install Kylix. Let’s
assume for the sake of argument

that you told the installer to put
Kylix in /usr/local/kylix.

By default, the install program
offers to put Kylix into a directory
below the home directory of the
current user. Although installing
Kylix from the root account is a
good idea, habitually running Kylix
from root is a bad idea, for reasons
that should be obvious. Moreover,
if you install Kylix below the /root
directory, it will be inaccessible to
ordinary users. In my opinion, the
install program should detect that
it’s being executed by root and

change the default install direc-
tory to /usr/local/kylix or some-
thing similar, or at least warn of the
consequences of installing below
/root. This is the single most glar-
ing deficiency in the Kylix install
program.

Assuming Kylix is installed into
/usr/local/kylix, then the kylixpath
script will be located at /usr/local/
kylix/bin/kylixpath. Although you
could manually execute this script
every time you start a new session,
that would be very tedious.
Assuming you’re using the BASH
shell, a much better idea is to place
the necessary shell command into
a special file called ~/.bashrc so
that it’s executed automatically
every time you start a new shell.
Yes, that’s right, the Linux equiva-
lent of AUTOEXEC.BAT!

What’s not obvious from the
foregoing is that the tilde (~) is
shell-speak for your home direc-
tory. If your username is dave, then
this will be /home/dave. So, the
procedure is, go to your home
directory, locate the file .bashrc
and... what do you mean, you can’t
see any file by that name? Another
Linux convention is that files that
begin with a period are normally
invisible to file managers and the
like. Just open your favourite file

➤ Figure 5: It looks like Windows, but this is W2KWM, the first
Kylix-authored window manager for Linux! Find it, free with source
code, at www.vclcrawler.com/w2kwm/.

➤ Figure 6: ldd is a useful Linux utility which tells you what shared
libraries and packages are used by an executable. Use it when
determining how to deploy a Linux application.

May 2001 The Delphi Magazine 51

manager, such as kfm, navigate to
your home directory and select
Show Hidden Files from the View
menu. At this point, .bashrc should
appear and you can edit it in the
usual way.

Well actually, you can’t. The bad
news is that, by default, ordinary
users don’t have write access to
this file so, here again, we have
another Linux assumption that
hasn’t been spelt out for you! It’s
probably easiest to just edit
.bashrc immediately after install-
ing Kylix while you’re still logged
on as root.

Assuming you installed Kylix
into the directory mentioned ear-
lier, it’s now just a case of append-
ing the following line to the end of
dave’s .bashrc and saving the file:

source /usr/local/kylix/bin/
kylixpath >/dev/null

In plain English, this shell com-
mand says ‘read and execute all
the shell commands in the
kylixpath script, and throw away
any console output that gets
generated’.

With all that done, log in as dave,
and you should now be able to
simply execute your Kylix
executables from the command
line. That was easy, wasn’t it? But

in all seriousness, I think Borland
need to try a lot harder if they
expect Windows developers to
persevere with this stuff. Those
tersely-worded README files on the
CD are jam-packed full of assump-
tions about the Linux knowledge of
the end-user, and they really need
padding out with a lot more back-
ground information.

Conclusions
Some folks will doubtless accuse
me of having spent too long looking
at performance issues relating to
the execution of applications from
within the Kylix IDE. That’s a fair
accusation, but having got the bit
between my teeth, I found it hard to
let go until I’d found that
multi-threaded applications were
the cause of the problem!

I’m anxious that you shouldn’t
come away with the impression
that this is a negative article: it defi-
nitely isn’t. Kylix is undoubtedly
the best software development
environment for Linux at the pres-
ent time, but a certain amount of
preparation is needed to get the
best out of it, and this could have
been helped with better documen-
tation from Borland.

I’ll briefly summarise by saying
that, first, you should avoid run-
ning under VMware if that is at all

possible. I’m a great fan of
VMware, but there seems to be
some sort of thread-switching
problem in the IDE which is exacer-
bated by the presence of VMware.
Hopefully this will be fixed soon,
but in any event you’ll get better
performance, and have more
memory available, by ‘going
native’.

Second, if you’re not that famil-
iar with Linux, follow my Plain
Man’s Guide to setting up your
.bashrc file such that you can run
Kylix applications outside the IDE.
If you still have no joy, ask in one of
the Kylix-specific newsgroups I’ve
alluded to earlier.

In future issues, we’ll be looking
at topics such as Delphi/VCL com-
patibility: what are the main things
to watch out for when porting your
application from Windows to
Linux or vice versa? Have Borland
done a good job of wrapping the
underlying Qt controls so as to
make them behave, as far as possi-
ble, like the common controls
present on Windows? Stay tuned
for a lot more Kylix coverage in the
future, starting with Brian’s article
on Apache shared modules using
Kylix, and Bob Swart’s coverage of
dbExpress, in this very issue.

So, to answer my original ques-
tion, is Kylix worth buying? Abso-
lutely. As you’d expect from a ‘1.0’
product, it has its rough edges, and
I anticipate that the IDE will be a
great deal smoother and more
responsive once the Wine has
been put back in the bottle, so to
speak! I’m not overwhelmed by the
number of third-party compo-
nents that are available, but I’m
very impressed by the quality of
some of the components that are.
If you want to get in on the ground
floor of the Kylix revolution, now is
undoubtedly the time to do it.

Dave Jewell is the Technical Editor
of The Delphi Magazine, contact
him at TechEditor@itecuk.com

➤ Figure 7: At time of writing, Developer Express are keeping fairly
quiet about their plan for Kylix, but it's clear that they have ported
at least some of their controls across to CLX…

	What’s In The Box?
	Third Party Support
	IDE Performance Issues: Is It VMware?
	Performance Issues: Getting Your Threads In A Knot?
	Old Wine In New Wineskins?
	Deployment Issues And The GPL ‘Virus’
	The Plain Man’s Guide To Running Kylix Programs
	Conclusions

